CS 4530: Fundamentals of Software Engineering

Module 9.1 Distributed Systems: Goals and
Challenges

Adeel Bhutta, Jan Vitek and Mitch Wand
Khoury College of Computer Sciences

© 2023 Released underthe CC BY-SA license

https://creativecommons.org/licenses/by-sa/4.0/

Learning Goals for this Lesson

« At the end of this lesson you should be
able to

 List and define 5 goals of using distributed
systems

 List 4 major challenges of using distributed
systems

What is a distributed system?

Model One: Model Two:
Many servers talking through a network Many servers and clients talking through a network

Distributed Systems Goals

» Scalability

« Performance

« Latency

« Availability

« Fault Tolerance

“Distributed Systems for Fun and Profit”, Takada

https://book.mixu.net/distsys/ebook.html

Distributed Systems Goals

- Scalability

“the ability of a system, network, or

 Performance process, to handle a growing amount of
- Latency work in a capable manner or its ability
. . to be enlarged to accommodate that
» Availability ”
growth.

e Fault Tolerance

“Distributed Systems for Fun and Profit”, Takada

Distributed Systems Allow
Horizontal Scaling

* “Vertical” scaling: add more resources to
existing server

« Faster CPUs, more CPU cores, more RAM, more
storage

« Becomes ineffective : Clock speed plateaus;
difficult to write applications that utilize 256 CPU
cores (adding 2TB RAM to a server can often help)

« *"Horizontal” scaling: add more servers

« Rely on "commodity” servers rather than state-of-
the-art hardware

« Allows for dynamic addition of resources as needed
by load

Distributed Systems Goals

) Scalablllty “The amount of useful work

 Performance accomplished by a computer system

. Latency compared to the time and resources
: - used.”

» Availability

e Fault Tolerance

“Distributed Systems for Fun and Profit”, Takada

Multiple Servers Can Improve
Throughput With Concurrency

Throughput: total requests that can be processed per unit-time

Request | Cache | Build friends Build Build Send Response
Check list Newsfeed Suggestions response

Request

Response
Send —

response

Cache Build friends Build Build
Check list Newsfeed Suggestions

Build friends Build Build
list Newsfeed Suggestions

Distributed Systems Goals

« Scalability
The time during which something that

» Performance has already happened is concealed from
- Latency view.

 Availability

* Fault Tolerance .
In @ multi-server system, we can select a

server that is closer to the user.

“Distributed Systems for Fun and Profit”, Takada

Reduce latency by distributing data

« Move or replicate the data
« Avoid bottlenecks
 Decrease transmission time

“Distributed Systems for Fun and Profit”, Takada

Distributed Systems Goals

 Scalability
 Performance “the proportion of time a systemisin a
- Latency functioning condition.”

- Availability

Availability = uptime / (uptime + downtime).
- Fault Tolerance

Often measured in “nines”

Availability % Downtime/year

90% >1 month
99% < 4 days
99.9% < 9 hours
99.99% <1 hour
99.999% 5 minutes

“Distributed Systems for Fun and Profit”, Takada 99.9999% 31 seconds

Distributed Systems can improve
availability by replicating servers

* A single-server system is either up or
down.

 If you have many servers, the probability
that some server is down increases

« BUT: the probability that all servers are
down decreases (exponentially!)

12

Here's a crude quantitative model

« Say there’s a 1% chance of having some
hardware failure occur to a machine in a
given month (power supply burns out, hard
disk crashes, etc)

* Now I have 10 machines

» Probabilit (lat least one fails during the month) =
1 - Probability(no machine fails) = 1-(1-.01)10 =
10%
« 100 machines -> 63% chance that at least
one fails

« Chance that all machines fail during the
month: (.01)10 = 1012

Distributed Systems Goals

» Scalability

* Performance “ability of a system to behave in a well-
 Latency defined manner once faults occur”

- Availability

 Fault Tolerance

“Distributed Systems for Fun and Profit”, Takada

Design to expect faults

“Define what faults you expect and then
design a system or an algorithm that is
tolerant of them. You can't tolerate faults
you haven't considered.”

What kind of faults?

Disks fall Networking fails
Power supplies falil Security breached
Power goes out Datacenter goes offline

“Distributed Systems for Fun and Profit”, Takada

15

Distributed Systems Challenges

More machines means more links that
might fail.

« Number of nodes + distance between
them

--------------------- = | ——— o --.=_==|-i==.=====“',|"” ”"i-]”——_: . C l -'I-i"""-“'"“ ""'I-]"——‘I
,,,,,,,,,,,,,,,,,,,,,,, — i

Networks introduce delays

Cannot expect network to be a perfect analog for
communication within a single computer because:

« Speed of light (1 foot/nanosecond)

« Communication links exist in uncontrolled/hostile
environments

« Communication links may be bandwidth limited
(tough to reach even 100MB/sec)

In contrast to a single computer, where:
« Distances are measured in mm, not feet
» Physical concerns can be addressed all at once

« Bandwidth is plentiful (easily GB/sec)

We still rely on other administrators,
who are not infallible

Amazon Web Services
outage takes a portion of
the internet down with it S Contact Sales Supportv English My Account v Sign In to the Console

eoe [< 0O 0 B & aws.amazon.com] ©] ﬂ] + ©

Products Solutions Pricing Documentation Learn Partner Network AWS Marketplace Customer Enablement Events Explore More Q

Zack Whittaker C]
Summary of the Amazon Kinesis Event in the Northern Virginia (US-EAST-1)

Region

@zackwhittaker / 12:32 PMEST * November 25, 2020 Comment

November, 25th 2020

We wanted to provide you with some additional information about the service disruption that occurred in the Northern Virginia (US-EAST-1) Region on
November 25th, 2020.

Amazon Kinesis enables real-time processing of streaming data. In addition to its direct use by customers, Kinesis is used by several other AWS services.
These services also saw impact during the event. The trigger, though not root cause, for the event was a relatively small addition of capacity that began
to be added to the service at 2:44 AM PST, finishing at 3:47 AM PST. Kinesis has a large number of “back-end"” cell-clusters that process streams. These
are the workhorses in Kinesis, providing distribution, access, and scalability for stream processing. Streams are spread across the back-end through a
sharding mechanism owned by a “front-end" fleet of servers. A back-end cluster owns many shards and provides a consistent scaling unit and fault-
isolation. The front-end’s job is small but important. It handles authentication, throttling, and request-routing to the correct stream-shards on the
back-end clusters.

The capacity addition was being made to the front-end fleet. Each server in the front-end fleet maintains a cache of information, including
membership details and shard ownership for the back-end clusters, called a shard-map. This information is obtained through calls to a microservice
vending the membership information, retrieval of configuration information from DynamoDB, and continuous processing of messages from other
Kinesis front-end servers. For the latter communication, each front-end server creates operating system threads for each of the other servers in the
front-end fleet. Upon any addition of capacity, the servers that are already operating members of the fleet will learn of new servers joining and
establish the appropriate threads. It takes up to an hour for any existing front-end fleet member to learn of new participants.

At 5:15 AM PST, the first alarms began firing for errors on putting and getting Kinesis records. Teams engaged and began reviewing logs. While the new
capacity was a suspect, there were a number of errors that were unrelated to the new capacity and would likely persist even if the capacity were to be
[2] Image Credits: David Becker / Getty Images removed. Still, as a precaution, we began removing the new capacity while researching the other errors. The diagnosis work was slowed by the variety
of errors observed. We were seeing errors in all aspects of the various calls being made by existing and new members of the front-end fleet,
exacerbating our ability to separate side-effects from the root cause. At 7:51 AM PST, we had narrowed the root cause to a couple of candidates and

Amazon Web Services is Curl’ehtly haVIhg an outage, taklhg determined that any of the most likely sources of the problem would require a full restart of the front-end fleet, which the Kinesis team knew would be
. . . a long and careful process. The resources within a front-end server that are used to populate the shard-map compete with the resources that are used
a Chunk Of the internet dOWn Wlth it. to process incoming requests. So, bringing front-end servers back online too quickly would create contention between these two needs and result in

very few resources being available to handle incoming requests, leading to increased errors and request latencies. As a result, these slow front-end
servers could be deemed unhealthy and removed from the fleet, which in turn, would set back the recovery process. All of the candidate solutions
involved changing every front-end server's configuration and restarting it. While the leading candidate (an issue that seemed to be creating memory

Several AWS services were experiencing problems as of

early Wednesday according to ItS status page That means pressure) looked promising, if we were wrong, we would double the recovery time as we would need to apply a second fix and restart again. To speed
! i restart, in parallel with our investigation, we began adding a configuration to the front-end servers to obtain data directly from the authoritative
any app, site or service that relies on AWS mlght also be metadata store rather than from front-end server neighbors during the bootstrap process.

At 9:39 AM PST, we were able to confirm a root cause, and it turned out this wasn’t driven by memory pressure. Rather, the new capacity had caused all
of the servers in the fleet to exceed the maximum number of threads allowed by an operating system configuration. As this limit was being exceeded,

down, too. (As | found out the hard way this morning when

Learning Goals for this Lesson

* You should now be able to

 List and define 5 goals of using distributed
systems

 List 4 major challenges of using distributed
systems

21

	CS 4530: Fundamentals of Software Engineering��Module 9.1 Distributed Systems: Goals and Challenges
	Learning Goals for this Lesson
	What is a distributed system?
	Distributed Systems Goals
	Distributed Systems Goals
	Distributed Systems Allow Horizontal Scaling
	Distributed Systems Goals
	Multiple Servers Can Improve Throughput With Concurrency
	Distributed Systems Goals
	Reduce latency by distributing data
	Distributed Systems Goals
	Distributed Systems can improve availability by replicating servers
	Here’s a crude quantitative model
	Distributed Systems Goals
	Design to expect faults
	Distributed Systems Challenges
	More machines means more links that might fail.
	Networks introduce delays
	We still rely on other administrators, who are not infallible
	Learning Goals for this Lesson

